Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cytokine ; 152: 155810, 2022 04.
Article in English | MEDLINE | ID: covidwho-1719582

ABSTRACT

Genome-wide association studies have recently identified 3p21.31, with lead variant pointing to the CXCR6 gene, as the strongest thus far reported susceptibility risk locus for severe manifestation of COVID-19. In order the determine its role, we measured plasma levels of Chemokine (C-X-C motif) ligand 16 (CXCL16) in the plasma of COVID-19 hospitalized patients. CXCL16 interacts with CXCR6 promoting chemotaxis or cell adhesion. The CXCR6/CXCL16 axis mediates homing of T cells to the lungs in disease and hyper-expression is associated with localised cellular injury. To characterize the CXCR6/CXCL16 axis in the pathogenesis of severe COVID-19, plasma concentrations of CXCL16 collected at baseline from 115 hospitalized COVID-19 patients participating in ODYSSEY COVID-19 clinical trial were assessed together with a set of controls. We report elevated levels of CXCL16 in a cohort of COVID-19 hospitalized patients. Specifically, we report significant elevation of CXCL16 plasma levels in association with severity of COVID-19 (as defined by WHO scale) (P-value < 0.02). Our current study is the largest thus far study reporting CXCL16 levels in COVID-19 hospitalized patients (with whole-genome sequencing data available). The results further support the significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19 and warrants further studies to understand which patients would benefit most from targeted treatments.


Subject(s)
COVID-19/blood , Chemokine CXCL16/blood , SARS-CoV-2/metabolism , Aged , COVID-19/genetics , COVID-19/immunology , Chemokine CXCL16/genetics , Chemokine CXCL16/immunology , Female , Humans , Male , Middle Aged , Patient Acuity , Receptors, CXCR6/blood , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Signal Transduction/genetics , Signal Transduction/immunology
2.
Genome Biol ; 22(1): 242, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1370944

ABSTRACT

To date, the locus with the most robust human genetic association to COVID-19 severity is 3p21.31. Here, we integrate genome-scale CRISPR loss-of-function screens and eQTLs in diverse cell types and tissues to pinpoint genes underlying COVID-19 risk. Our findings identify SLC6A20 and CXCR6 as putative causal genes that modulate COVID-19 risk and highlight the usefulness of this integrative approach to bridge the divide between correlational and causal studies of human biology.


Subject(s)
COVID-19/genetics , Membrane Transport Proteins/genetics , Quantitative Trait Loci , Receptors, CXCR6/genetics , Chromosomes, Human, Pair 3/genetics , Humans , Phenotype
3.
Hum Genet ; 140(9): 1313-1328, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1279450

ABSTRACT

The coronavirus disease 2019 (COVID-19) is an infectious disease that mainly affects the host respiratory system with ~ 80% asymptomatic or mild cases and ~ 5% severe cases. Recent genome-wide association studies (GWAS) have identified several genetic loci associated with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important for better understanding its biological mechanisms. We implemented integrative approaches, including transcriptome-wide association studies (TWAS), colocalization analysis, and functional element prediction analysis, to interpret the genetic risks using two independent GWAS datasets in lung and immune cells. To understand the context-specific molecular alteration, we further performed deep learning-based single-cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from moderate and severe COVID-19 patients. We discovered and replicated the genetically regulated expression of CXCR6 and CCR9 genes. These two genes have a protective effect on lung, and a risk effect on whole blood, respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung-resident memory CD8+ T (TRM) cells, we found a 2.24-fold decrease of cell proportion among CD8+ T cells and lower expression of CXCR6 in the severe patients than moderate patients. Pro-inflammatory transcriptional programs were highlighted in the TRM cellular trajectory from moderate to severe patients. CXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6 tends to have a lower expression in lung TRM cells of severe patients, which aligns with the protective effect of CXCR6 from TWAS analysis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 , Immunologic Memory/genetics , Lung/immunology , Quantitative Trait Loci/immunology , Receptors, CXCR6 , SARS-CoV-2/immunology , Transcriptome/immunology , COVID-19/genetics , COVID-19/immunology , Female , Genome-Wide Association Study , Humans , Lung/virology , Male , Receptors, CCR/genetics , Receptors, CCR/immunology , Receptors, CXCR6/genetics , Receptors, CXCR6/immunology , Risk Factors , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL